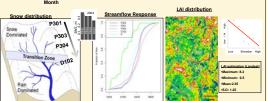
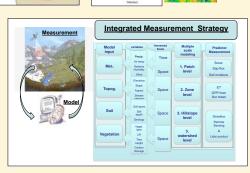
An Optimized Soil moisture Sampling design to Represent the Impact of Climate variability on

Soil moisture and Vegetation water use in Snow-Dominated Watersheds

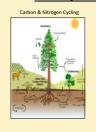
Kyongho Son and Christina Tague, Bren School of Environmental Science and management,

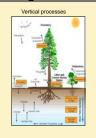

University of California, Santa Barbara (kson@bren.ucsb.edu)


Abstract

We develop a soil moisture (and vegetation water flux) sampling strategy that is explicitly designed to capture spatial heterogeneity that will likely be important in characterizing system responses to inter-annual climate variability. Our research site, the Sierra Critical Zone Observatory (CZO) is located in rain-snow transition zone, and thus offers an ideal site for investigating how inter-annual climate variability will change the spatial distribution of snow melt and associated soil wetting-drying and plant water use. Sampling design is selected using physicallybased, spatially distributed eco-hydrologic model and associated statistical analysis. We initially calibrate the model to reproduce existing soil moisture, sanflow and streamflow data. We use the model to generate spatial-temporal patterns of snow, soil moisture and transpiration under historical and projected future climate. These patterns are then clustered to identify areas of hydrologic similarity, where similarity will be defined by inter-annual mean and variation of a suite of hydrologic indicators (e.g. seasonal trajectories of snowmelt, root-zone soil moisture storage, and evapotranspiration). Results from this study will demonstrate the utility of such a closely integrated measurement-modeling approach.

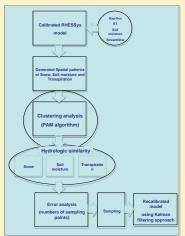
5 ...

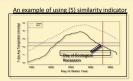




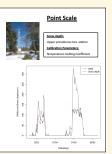
Research Questions

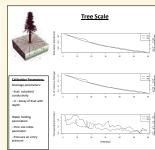
- What are optimal additional soil moisture monitoring locations, given the goal of capturing within watershed spatial patterns of inter-annual (climate driven) variation in soil moisture dynamics?
- What are optimal sap-flux monitoring locations, given the goal of capturing within watershed spatial patterns of inter-annual (climate driven) variation in vegetation summer water stress?

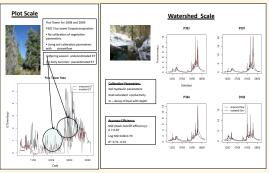

RHESSys Modeling framework

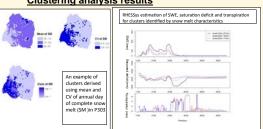


Using RHESSys to guide sampling design




Hydrologic Similarity Indicators


- o mean and inter-annual variation (expressed as coefficient of variation, CV) of five indicators
- 1) Length of snow melt period,
- 2) Days with fully saturated root-zone soil moisture
- 3) Days with greater than 70% saturated root-zone soil moisture
- 4) Day of year that root-zone soil moisture declines to midpoint between field capacity and wilting point
- 5) Day of year that transpiration declines to 50% of its peak growing season value


Model Performance

Clustering analysis results

Summary

- Using physical distributed model and statistic analysis to guide soil moisture and sapflux measurement
- Data collected at different scales was used to test the model performance
- Additional sampling data will be used to constrain the model parameter spaces and reduce the model uncertainty.

This Project is funded by a grant from the National Science Foundation - California Sierra Critical Zone Observatory