

Climate Change Effects on Vegetation Water and Carbon Cycling and **Species Composition in Yosemite National Park**

Kavita Heyn¹, Christina Tague¹ and Lindsey Christiensen²

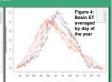


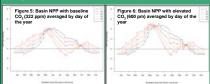
Abstract

Climate Change Scenarios

	Temp increase		Tal
Scenario	(°C)	CO2 concentration (ppm)	Cli
T		Baseline CO2 (322 ppm)	SC
T2	2+	Baseline CO2 (322 ppm)	us
T4		Baseline CO2 (322 ppm)	RH
T6		Baseline CO2 (322 ppm)	me
T8	8+	Baseline CO2 (322 ppm)	
TC2	Baseline T	Elevated CO2 (600 ppm)	
T2C2	2+	Elevated CO2 (600 ppm)	
T4C2	4+	Elevated CO2 (600 ppm)	
T6C2		Elevated CO2 (600 ppm)	

Spatial Differences in **Vegetation Response**

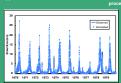



Site Description

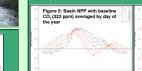
ation is coniferous forest covering 68.5% of the bas ting of pine, hemlock, Douglas fir, and juniper.

Seasonal Eco-hydrologic Changes

Potential Species Composition Changes



RHESSys Model



Conclusion

