Skip to content

New Publication! Snow, runoff, and counteracting influences

This research highlights how runoff losses/gains due to changes in snow dynamics (amount, melt, timing) as a result of climate change are mediated by site specific conditions such as vegetation use, subsurface characteristics, and energy availability.

Barnhart, T. B., Tague, C. L., & Molotch, N. P. (2020). The counteracting effects of snowmelt rate and timing on runoff. Water Resources Research, 56, e2019WR026634.

New Pub! Impacts of forest‐fuel treatments and wildfire on hydrologic fluxes in the Sierra Nevada

In this April Ecohydrology publication, “Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed‐conifer forests” – RHESSys, constrained with spatially distributed field measurements, was used to assess the impacts of forest‐fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. 

Saksa, P.C., Bales, R.C., Tague, C.L., Battles, J.J., Tobin, B.W., Conklin, M.H. (2019) Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests, Ecohydrology 13(3): e2151.

New Pub! Vertical processes and the nitrate concentration–discharge relationships in a semi‐arid watershed

In this new publication “Sensitivity of nitrate concentration‐discharge patterns to soil nitrate distribution and drainage properties in the vertical dimension“, the authors argue that vertical ‘variable source area’ (VSA) processes may be as important as lateral VSA in determining concentration-discharge relationships in a semi‐arid watershed.

Chen, X., Tague, C.L., Melack, J.M., Keller, A.A. (2020) Sensitivity of nitrate concentration-discharge patterns to soil nitrate distribution and drainage properties in the vertical dimension, Hydrological Processes doi: 10.1002/hyp.13742

New publication on Urban Vegetation impact from Drought

This study looks at the response and potential impacts of drought on urban vegetation, and the ecosystem services it provides to cities – where >50% of the worlds populations resides.

Miller, D.L., Alonzo, M., Roberts, D.A., Tague, C.L., McFadden, J.P. (2020) Drought response of urban trees and turfgrass using airborne imaging spectroscopy, Remote Sensing of the Environment 240, 111646.

New Publication on implications of Active/Passive management on abandoned cropland

In this study, the RHESSys model is used to study the post response (including potential climate change scenarios) of hydrologic and vegetation dynamics to an Active Management strategy (i.e. shrub clearing as a result of natural revegetation) in an abandoned cropland catchment  of the Central Spanish Pyrenees.

Khorchani, M., Nadal-Romero, E., Tague, C., Lasanta, T., Zabalza, J., Lana-Renault, N., Domingues-Castro, F., Choate, J. (2020) Effects of active and passive land use management after cropland abandonment on water and vegetation dynamics in the Central Spanish Pyrenees, Science of the Total Environment 717: 137160.

New Publication looks at perspective on research directions in ecohydrology

In this new publication, the authors synthesis reveals an ecohydrology community that is increasingly interdisciplinary, engaged in society‐relevant problems, and that uses new technologies and modelling approaches to accomplish these goals.

Tague, C.L., et. al. (2020) Adding our leaves: A community‐wide perspective on research directions in ecohydrology, Hydrological Processes

Louis Graup Lightning talk

Tague Team Lab member and PhD student Louis Graup presented “Fire and Water: a Spatial Connection” as part of the 2020 UCSB Center for Spatial Studies Spatial Lightning Talks last week.  Bringing together speakers from across the UCSB campus and the local community, this annual series of 3-minute lightning talks is designed to enlighten participants on a broad range of spatial topics.

Naomi Tague gives Moore Lecture

Earlier this month, Naomi Tague presented “Animating green stuff in Hydrologic models: Where we are and what is next” as part of the University of Virginia’s Environmental Sciences Department Moore lecture series hosted by Larry Band.

Abstract: Early hydrologic models represented vegetation as a simple parameter that influenced interception and the transpiration of soil water – the green slime approach. The next generation of eco-hydrology models, termed flow and grow models, included vegetation growth in response to water availability, nutrients and climate. The ‘grow’ component of today’s eco-hydrology models ranging from simple empirical relationships to sophisticated physiological approaches that can explore adaptation and disturbance. Added complexity adds realism and allows models to integrate new theory and data – to become ‘virtual laboratories’. Complexity however is also challenge – What ecohydrology models actually do is rarely clear – they are often ‘black boxes’ even to those who design and use them and this opacity reduces credibility and complicates the interpretation of model results For models to be more effective at advancing understanding how how plants, soil, climate and water interact we must improve how we visualize and communicate not only model output but also the underlying theories that are encoded This is a science-communication challenge that can be tackled with new innovations from computer science and statistics, especially in visualization, informatics and human-computer interface design. In this talk I argue that these innovations are essential if we are to realize the potential of ecohydologic models – and more generally provide ways to use evolving knowledge and data. I present a framework to move us toward this goal and several recent examples.

1 2 10